Singular Spectrum Analysis for time series: Introduction to this special issue

نویسنده

  • Anatoly Zhigljavsky
چکیده

General. Singular spectrum analysis (SSA) is a technique of time series analysis and forecasting. It combines elements of classical time series analysis, multivariate statistics, multivariate geometry, dynamical systems and signal processing. From the algorithmic point of view, SSA can be considered as a typical subspace-based method of signal processing. SSA aims at decomposing the original series into a sum of a small number of interpretable components such as a slowly varying trend, oscillatory components and a ‘structureless’ noise. It is based on the singular value decomposition (SVD) of a specific matrix constructed upon the time series. Neither a parametric model nor stationarity-type conditions have to be assumed for the time series. This makes SSA a model-free technique and hence enables SSA to have a very wide range of applicability.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predicting the Brexit outcome using singular spectrum analysis

In a referendum conducted in the United Kingdom (UK) on June 23, 2016, $51.6\%$ of the participants voted to leave the European Union (EU). The outcome of this referendum had major policy and financial impact for both UK and EU, and was seen as a surprise because the predictions consistently indicate that the ``Remain'''' would get a majority. In this paper, we investigate whether the outcome o...

متن کامل

کاربرد آنالیز طیفی بیزی در تحلیل سری‌های زمانی نورسنجی

The present paper introduces the Bayesian spectral analysis as a powerful and efficient method for spectral analysis of photometric time series. For this purpose, Bayesian spectral analysis has programmed in Matlab software for XZ Dra photometric time series which is non-uniform with large gaps and the power spectrum of this analysis has compared with the power spectrum which obtained from the ...

متن کامل

Solving singular integral equations by using orthogonal polynomials

In this paper, a special technique is studied by using the orthogonal Chebyshev polynomials to get approximate solutions for singular and hyper-singular integral equations of the first kind. A singular integral equation is converted to a system of algebraic equations based on using special properties of Chebyshev series. The error bounds are also stated for the regular part of approximate solut...

متن کامل

A Unique Approach of Noise Elimination from Electroencephalography Signals between Normal and Meditation State

In this paper, unique approach is presented for the electroencephalography (EEG) signals analysis. This is based on Eigen values distribution of a matrix which is called as scaled Hankel matrix. This gives us a way to find out the number of Eigen values essential for noise reduction and extraction of signal in singular spectrum analysis. This paper gives us an approach to classify the EEG signa...

متن کامل

A Novel Noise Reduction Method Based on Subspace Division

This article presents a new subspace-based technique for reducing the noise of signals in time-series. In the proposed approach, the signal is initially represented as a data matrix. Then using Singular Value Decomposition (SVD), noisy data matrix is divided into signal subspace and noise subspace. In this subspace division, each derivative of the singular values with respect to rank order is u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010